PYRUVATE SYNTHESIS FROM ACETYL COENZYME A AND CARBON DIOXIDE WITH NADH₂ OR NADPH₂ AS ELECTRON DONORS

G. GOTTSCHALK and A. A. CHOWDHURY

Institute of Microbiology, University of Göttingen, 34 Göttingen, Germany

Received 4 February 1969

1. Introduction

In Clostridium kluvveri reduced ferredoxin is acting as electron donor in two reactions: the evolution of hydrogen gas during the ethanol-acetate fermentation [1] and the synthesis of pyruvate from acetyl-CoA CoA and CO₂ [2,3]. The first reaction is important because it enables C. kluyveri to gain ATP by substrate phosphorylation [4]. The second reaction provides the cell with pyruvate needed for the biosynthesis of cellular constituents [5]. The physiological reaction, however, by which Fd⁺ is reduced and regenerated for the above processes is not known. In this paper we report that a cell-free system of C. kluvveri supplemented with NADH2 or NADPH2 and acetyl-CoA catalyzes the reduced Fd dependent synthesis of pyruvate in a nitrogen atmosphere. With a cell-free system of C. pasteurianum a similar reaction was not observed.

2. Materials and methods

C. kluyveri was grown and cell-free extracts were prepared as described previously [6]. C. pasteurianum was cultivated in the medium of ref. [7] and Fd was purified according to ref. [8]. The enzymic reactions were carried out in Warburg vessels containing Sephadex G-25 treated cell-free extract in 50 mM potassium phosphate buffer, pH 7.0, and 25 mM 2-mercapto-

ethanol in sidearm 1, KH¹⁴CO₃ solution in sidearm 2 and the other reactants in the main compartment. The Warburg vessels were flushed with purified nitrogen gas for 10 min. Following a preincubation period of 20 min, the reactions were run for 20 min at 30°. After stopping with perchloric acid and removal of the ¹⁴CO₂ the remaining non-volatile radioactivity was measured in a Packard Tri-Carb using Bray's [9] scintillation fluid. Paper chromatography was carried out according to ref. [10]. LDH (360 U/mg) was purchased from Boehringer, Mannheim.

3. Results

As is well known [2,3] cell-free extracts of *C. kluy-veri* catalyzed the synthesis of pyruvate from acetyl-CoA and CO₂ in a hydrogen atmosphere (table 1). The rate of pyruvate formation increased when LDH and NADH₂ were added as trapping reagents. An incorporation of ¹⁴CO₂ into non-volatile compounds was also observed when the reaction was carried out under nitrogen in the presence of relatively high concentrations of NADH₂ or NADPH₂. Pyruvate trapping reagents such as LDH or semicarbazide increased the rate of ¹⁴CO₂ fixation. Similar experiments were performed with cell-free extracts of *C. pasteurianum*. Although the pyruvate synthase system was active in these extracts no ¹⁴CO₂ was incorporated with NADH₂ or NADPH₂ as terminal electron donors.

Reactions 5 and 7 of table 1 were run with ¹⁴CO₂ of a higher specific radioactivity and the products formed were identified. Chromatography and cochro-

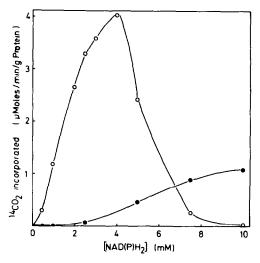
^{*} Abbreviations used: ferredoxin = Fd; lactate dehydrogenase = LDH.

Table 1

Reductive carboxylation of acetyl-CoA by cell-free extracts of C. kluyveri and of C. pasteurianum with hydrogen or NAD(P)H₂ as terminal electron donors.

Components added or omitted	Atmo- sphere	¹⁴ CO ₂ incorporated			
		C. kluyveri		C. pasteurianum	
		(cpm/assay)	(U/g of protein)	(cpm/assay)	(U/g of protein)
1. –	Н	24,460	1.42	~	_
2. + NADH ₂ ; + LDH	Н	144,130	8.38	110,200	9.75
3. =	N	90	_	116	_
4. + NADH ₂	N	3,650	0.21	166	
5. + NADH ₂ ; + LDH	N	57,170	3.32	180	_
6. + NADH ₂ ; + LDH; – acetyl phosphate	N	140	_	120	_
7. + NADPH ₂	N	5,790	0.34	284	
8. + NADPH ₂ ; + semicarbazide	N	9,550	0.55	196	-

The assay system contained in a total volume of 2.0 ml: potassium phosphate buffer, pH 7.0, 50 mM; 2-mercaptoethanol, 25 mM; potassium lithium acetyl phosphate, 25 mM; KH 14 CO $_{3}$ (279,000 cpm/ μ mole), 10 mM; coenzyme A, 0.5 mM; and 0.4 ml of Sephadex G-25 treated extract of C. kluyveri (7.7 mg of protein/ml) and of C. pasteurianum (5 mg of protein/ml), respectively. NADH $_{2}$, 2.5 mM; NADPH $_{2}$, 5 mM; LDH, 100 μ g; and semicarbazide, 10 mM were added as indicated. The experimental conditions were described in Methods. U = μ moles/min.


Table 2

Effect of ferredoxin on the reductive carboxylation of acetylCoA with NADH₂ as terminal electron donor.

Ferredoxin added	¹⁴ CO ₂ incorporated			
(μg/assay)	(cpm/assay)	(U/g of protein)		
0	80			
10	140	_		
25	4,230	0.52		
50	9,970	1.23		

The assay system contained the components described in table 1. NADH₂, 5 mM; LDH, 100 μ g; and cell-free extract (3.6 mg protein/ml), 0.4 ml were added. To remove ferredoxin the Sephadex G-25 treated extract was passed through a DEAE-cellulose column (3.0 \times 0.8 cm) equilibrated against 50 mM potassium phosphate buffer, pH 7.0.

matography with authentic samples in two solvent systems revealed the formation of pyruvate (74%) and alanine (26%) in reaction 7. Reaction 5 yielded lactate as the only radioactive product. It was identified by chromatography in 1-propanol: ammonia and isolated by chromatography of the reaction mixture on Dowex-1-formate. Degradation of the ¹⁴C-lactate by manganese dioxide [11] revealed that the radioactivity was present exclusively in the carboxyl group.

It is apparent from table 2 that the reductive carboxylation of acetyl-CoA with NADH₂ as electron donor was dependent on the presence of Fd. Extracts

passed through a DEAE-cellulose column catalyzed the reaction only after the addition of Fd.

The dependence of the amount of ¹⁴CO₂ fixed on the concentration of NADH₂ and NADPH₂ is shown in fig. 1. It can be seen that high concentrations of NADH₂ strongly inhibit the reaction. At concentrations up to 5 mM, NADH₂ is more effective as an electron donor than NADPH₂.

4. Discussion

Cell-free extracts of *C. kluyveri* catalyze the synthesis of pyruvate from acetyl-CoA, CO₂ and NADH₂ or NADPH₂. The reaction is not catalyzed by extracts of *C. pasteurianum* and *Chromatium* as was shown by Buchanan et al. [12]. The enzyme activity responsible for the reduction of Fd is therefore not necessarily present in all anaerobes containing NAD or NADP reductase.

Acknowledgements

The authors are grateful to Miss S.Dittbrenner for

excellent assistance. This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

References

- [1] W.W.Fredricks and E.R.Stadtman, J. Biol. Chem. 240 (1965) 4065.
- [2] I.G.Andrews and J.G.Morris, Biochim. Biophys. Acta 97 (1965) 176.
- [3] J.R.Stern, in: Non-Heme Iron Proteins: Role in Energy Conversion, ed. A.San Pietro (Antioch, Yellow Springs, Ohio) p. 199.
- [4] R.K.Thauer, K.Jungermann, H.Henninger, J.Wenning and K.Decker, European J. Biochem. 4 (1968) 173.
- [5] N.Tomlinson, J. Biol. Chem. 209 (1954) 597.
- [6] G.Gottschalk and H.A.Barker, Biochemistry 5 (1966) 1125.
- [7] J.E.Carnahan and J.E.Castle, J. Bacteriol. 75 (1958)
- [8] L.E.Mortensen, Biochim. Biophys. Acta 81 (1964) 71.
- [9] G.A.Bray, Anal. Biochem. 1 (1960) 279.
- [10] P.Hirsch, Arch. Mikrobiol. 46 (1963) 53.
- [11] W.Sakami, Handbook of Isotope Tracer Methods (School of Medecine, Ohio, 1955) p. 46.
- [12] B.B.Buchanan, R.Bachofen and D.I.Arnon, Proc. Natl. Acad. Sci. 52 (1964) 839.